CD40-Mediated Activation of the NF-κB2 Pathway
نویسندگان
چکیده
CD40 is a critical stimulatory receptor on antigen-presenting cells of the immune system. CD40-mediated activation of B cells is particularly important for normal humoral immune function. Engagement of CD40 by its ligand, CD154, on the surface of activated T cells initiates a variety of signals in B cells including the activation of MAP kinases and NF-κB. The transcriptional regulator NF-κB is in reality a family of factors that can promote B cell activation, differentiation, and proliferation. Complex - and only partially understood - biochemical mechanisms allow CD40 to trigger two distinct NF-κB activation pathways resulting in the activation of canonical (NF-κB1) and non-canonical (NF-κB2) NF-κB. This brief review provides a summary of mechanisms responsible for activation of the latter, which appears to be particularly important for enhancing the viability of B cells at various stages in their life cycle and may also contribute to the development of B cell malignancies. CD40 is also expressed by various cell types in addition to B cells, including T cells, macrophages, dendritic cells, as well as certain non-hematopoietic cells. Here too, while perhaps less extensively studied than in B cells, the CD40-mediated activation of NF-κB2 also appears to have important roles in cellular physiology.
منابع مشابه
A Complex Relationship between TRAF3 and Non-Canonical NF-κB2 Activation in B Lymphocytes
The adaptor protein TRAF3 restrains B cell activating factor receptor (BAFFR) and CD40-mediated activation of the NF-κB2 pathway in B cells. Mice lacking TRAF3 specifically in B cells revealed the critical role of TRAF3 in restraining homeostatic B cell survival. Furthermore, loss-of-function mutations of the traf3 gene have been associated with human B cell malignancies, especially multiple my...
متن کاملNon-Canonical NF-κB Signaling Initiated by BAFF Influences B Cell Biology at Multiple Junctures
It has been more than a decade since it was recognized that the nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) transcription factor family was activated by two distinct pathways: the canonical pathway involving NF-κB1 and the non-canonical pathway involving NF-κB2. During this time a great deal of evidence has been amassed on the ligands and receptors that activate t...
متن کاملNF-κB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants.
Resistance of prostate cancer cells to the next-generation antiandrogen enzalutamide may be mediated by a multitude of survival signaling pathways. In this study, we tested whether increased expression of NF-κB2/p52 induces prostate cancer cell resistance to enzalutamide and whether this response is mediated by aberrant androgen receptor (AR) activation and AR splice variant production. LNCaP c...
متن کاملNegative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signa...
متن کاملHodgkin disease: pharmacologic intervention of the CD40-NFkB pathway by a protease inhibitor
The malignant Reed-Sternberg cell of Hodgkin disease is an aberrant B cell that persists in an immunolgically mediated inflammatory infiltrate. Despite its nonproductive immunoglobulin genes, the ReedSternberg cell avoids the usual apoptotic fate of defective immune cells through an unknown mechanism. A likely candidate is the surface receptor, CD40, consistently expressed by Reed-Sternberg cel...
متن کامل